Kinetics of CH2OO reactions with SO2, NO2, NO, H2O and CH3CHO as a function of pressure.
نویسندگان
چکیده
Kinetics of CH2OO Criegee intermediate reactions with SO2, NO2, NO, H2O and CH3CHO and CH2I radical reactions with NO2 are reported as a function of pressure at 295 K. Measurements were made under pseudo-first-order conditions using flash photolysis of CH2I2-O2-N2 gas mixtures in the presence of excess co-reagent combined with monitoring of HCHO reaction products by laser-induced fluorescence (LIF) spectroscopy and, for the reaction with SO2, direct detection of CH2OO by photoionisation mass spectrometry (PIMS). Rate coefficients for CH2OO + SO2 and CH2OO + NO2 are independent of pressure in the ranges studied and are (3.42 ± 0.42) × 10(-11) cm(3) s(-1) (measured between 1.5 and 450 Torr) and (1.5 ± 0.5) × 10(-12) cm(3) s(-1) (measured between 25 and 300 Torr), respectively. The rate coefficient for CH2OO + CH3CHO is pressure dependent, with the yield of HCHO decreasing with increasing pressure. Upper limits of 2 × 10(-13) cm(3) s(-1) and 9 × 10(-17) cm(3) s(-1) are placed on the rate coefficients for CH2OO + NO and CH2OO + H2O, respectively. The upper limit for the rate coefficient for CH2OO + H2O is significantly lower than has been reported previously, with consequences for modelling of atmospheric impacts of CH2OO chemistry.
منابع مشابه
Kinetics of stabilised Criegee intermediates derived from alkene ozonolysis: reactions with SO2, H2O and decomposition under boundary layer conditions.
The removal of SO2 in the presence of alkene-ozone systems has been studied for ethene, cis-but-2-ene, trans-but-2-ene and 2,3-dimethyl-but-2-ene, as a function of humidity, under atmospheric boundary layer conditions. The SO2 removal displays a clear dependence on relative humidity for all four alkene-ozone systems confirming a significant reaction for stabilised Criegee intermediates (SCI) wi...
متن کاملA kinetic study of the CH2OO Criegee intermediate self-reaction, reaction with SO2 and unimolecular reaction using cavity ring-down spectroscopy.
Criegee intermediates are important species formed during the ozonolysis of alkenes. Reaction of stabilized Criegee intermediates with various species like SO2 and NO2 may contribute significantly to tropospheric chemistry. In the laboratory, self-reaction can be an important loss pathway for Criegee intermediates and thus needs to be characterized to obtain accurate bimolecular reaction rate c...
متن کاملKinetics of a Criegee intermediate that would survive high humidity and may oxidize atmospheric SO2.
Criegee intermediates are thought to play a role in atmospheric chemistry, in particular, the oxidation of SO2, which produces SO3 and subsequently H2SO4, an important constituent of aerosols and acid rain. However, the impact of such oxidation reactions is affected by the reactions of Criegee intermediates with water vapor, because of high water concentrations in the troposphere. In this work,...
متن کاملThe UV absorption spectrum of the simplest Criegee intermediate CH 2
Ozonolysis is a major removal mechanism in the troposphere for unsaturated hydrocarbons which are emitted in large quantities from both natural and human sources. Now it is generally accepted that ozonolysis of alkenes proceeds via Criegee intermediates, highly reactive species postulated in 1949 by Rudolf Criegee. In the troposphere, Criegee intermediates are involved in several important atmo...
متن کاملAtmospheric fates of Criegee intermediates in the ozonolysis of isoprene.
We use a large laboratory, modeling, and field dataset to investigate the isoprene + O3 reaction, with the goal of better understanding the fates of the C1 and C4 Criegee intermediates in the atmosphere. Although ozonolysis can produce several distinct Criegee intermediates, the C1 stabilized Criegee (CH2OO, 61 ± 9%) is the only one observed to react bimolecularly. We suggest that the C4 Criege...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 16 3 شماره
صفحات -
تاریخ انتشار 2014